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THE PROBLEM OF STABILIZING THE STEADY MOTIONS OF SYSTEMS 
WITH CYCLIC COORDINATES* 

V.I. KALENOVA, V.M. MOROZOV and M.A. SALMINA 

A new approach, based on linear control theory, is used to the study the 
stabilization of steady motions of systems in which only the cyclic 
coordinates are controllable /i, 2/. Unlike techniques previously used 
to solve this problem /3, 4/, which require the reduced system to have 
an asymptotically stable invariant manifold, maximum use is made here of 
the control possibilities inherent in the system. Several new 
controllability and observability criteria are formulated, taking the 
structure of the forces acting on the system into account. 

Some questions concerning the stabilization of steady solutions 
were considered in /5, 6/ for a given structure of the controls, and the 
stability of the closed-loop system was studied. Similar studies in /7, 
8/ also analysed controllability conditions. 

I. We consider a holonomic mechanical system with time-independent constraints, assuming 
that the generalized coordinates of the system, ~ ..... q,, include a group W ( i = r q - t  ..... 
n, r<n) not Occurring explicitly in the expression for the kinetic energy 2 of the system. 
We shall assume that the forces applied to the system are also independent of these coordinates, 
which are usually called pseudocyclic. The remaining coordinates q~(i = | ..... r) are called 
positional coordinates. Let q, q', ~ denote the column matrices whose elements are the 
positional coordinates, and the positional and pseudocyclic velocities, respectively. 

In the general case the system is gyroscopically constrained and its kinetic energy is 

Y = I/,q'TA (q) q" + q'r C (q) ~ -4- */z~TB (q) 

Here A and B are positive definite symmetric matrices and C is a rectangular matrix. Their 
coefficients depend only on the positional coordinates. 

The generalized forces corresponding to the positional coordinates are assumed to be 
known; each is the sum of potential and dissipative forces: 

Q, = OU/Oq, + Q~ (t = 1  . . . . .  r) 

The generalized forces Fj = F,(q, q', ~) (] = r+l ..... n) corresponding to the pseudocyclic 
coordinates will be treated as controls, to be determined later. 

Information about the values of q,q', ~ is obtained by a measurement ~ = ~ (q, q', ~) of 
dimension l × |. 

Suppose that under certain initial conditions the system admits of a steady motion: 

q ( t )  = q o = c o n s t ,  ~ ( t )  = ~o = cons t  

The quantities qo, ~o  are determined from the equations 

--OU/Oq,-- t /~O~TB~/Oq,  = 0 

Under these conditions F I = O. 
If the equalities 

OU/Oq, = OB~l/Oq, = 0 (~ = 1 . . . . .  r) ( t . 1 )  

hold at q = q0, where Bkj are the coefficients of the matrix B, the corresponding steady 
motion is said to be trivial; any other steady motion will be called essential. 

Introducing notation for the differences x = q -- qo, q = ~ -- ~0, we write the Lagrange 
equations in terms of x, n in matrix notation, separating out the linear terms: 

Aoz'" + (Do + Go) x" + Wox + Con" - -  P J ~  = X (z, x', n) 

Bo~" -4- CoTx "" -+- Pox" = u + 0 (x, x', n) ( t . 2 )  

Here D o is the coefficient matrix of the linear part of the dissipative force vector Qa, u 
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is the linear part of the control vector Y. 
question is evaluted at q ~ q., o -- o0. 
as follows: 

G,o = ~ 
OC,l ( 

W12 0 = 

A subscript zero means that the quantity in 
The elements of the matrices G., ~Vo, P0 are defined 

OClz 
Oq, )(or o, P, ,o= S /OBt' ~ 

/ ~ r + l  

O~U 1 ¢ O~Bkl 
OqOq, ~ ~ O')k~l O~Oqs Io 

If, 1=1 

Finally, X (x, x' ,  "q), O (x, x' ,  ~) are vector-valued functions containing terms non-linear in 
x, X ' , q .  

We consider the problem of stabilizing the steady motions qe, ~o of the system by con- 
trols applied only with respect to the pseudocyclic coordinates, relying on the equations in 
the first approximation: 

Ao x'" -5 (Do -5 Go) x" -5 Wox -5 Co~l" --  PoTn = 0 (t .3) 

Bo~]" + CoTx "" -5 Pox" = u 
o = Hox -5 Lox" -5 Roll ( t .4) 

Here u is the linear part of the measurement vector Y, and H 0, L 0, R0 are constant 
matrices of the appropriate dimensions. 

To solve the stabilization problem one must first determine whether system (1.3) can in 
principle be stabilized, i.e., test the system for controllability. Second, one has to secure 
the necessary information about the state of the system (i.e., about the values of x, x', ~) 
this can be done by analysing the observability of system (1.3), (1.4). The third stage is 
to construct a stabilization algorithm, e.g., by introducing a feedback loop in the procedure 
for evaluating the state vector of the system, based on information derived from the measure- 
ments. 

We will first state Kalman's necessary and sufficient conditions for observability and 
controllability /9/. To that end we reduce system (1.3), (1.4) to the Cauchy form: 

y" = Avy + Buu, o = Cuy (t .5) 
y = (x ,x ' ,~ l )  r ,  Cv = (Ho, Lo, Ro) 

A~ = Avz Al, a , B u = By1 
Aya Aya 

A~, = - -S j*Wo,  A~2 = --80 -1 (D O + G o -  CoBo-tPo), A~8 = So-*Po "r 
Av" = Mo'-ICoTAo-aWo, Av5 = - - M o  -t  (Po - -  CoTAo -* (Do -5 Go)), 

Aue = _ M o - a  CoTAo-lPo T 

Bux = --8o-lCoBo -1, B~2 = Mo-* 
S 0  = A o  - -  C o B o - l C o T ,  Mo = Bo - -  CoTAo-ICo, S O = SO T ~> 0, 

Mo = MoT > 0 

E r is the r X r identity matrix. 

Theol, em 1.1. system (1.5) is controllable and observable if and only if 

n+r~ l  rank II B~, At, B y , . . . ,  A,  B~, II - n + r 

rank C:Au 
. . . . .  = /~ 3C r 

tl c,,a~+'-~ 

(1.6) 

Verification of these conditions may be quite laborious. 

2. To obtain effective conditions for the controllability of system (1.3), it will be 
convenient to study two cases separately: gyroscopically uncoupled systems (GUS; C,-------0) and 
gyroscopically coupled systems (GCS). 

A GUS in trivial steady motion (i.i) (P0~ 0) splits into two independent subsystems: 

Aox'" + Dox" + W o x  = O, Bo~" = u (2.t) 

of which only the second is controllable (det B0~0 ). Hence trivial steady motions of a GUS 
are not stabilizable. Nevertheless, subject to certain conditions on the matrices A,, Do, V~0, 
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the trivial solution of system (2.1) may be asymptotically stable. A stability analysis of 
system (2.1) with an eye to the structure of the forces may be found in /3/. 

We now consider the case of essential steady motions of a GUS. 
The following theorems can be proved: 

Theorem 8.1. A GUS of order n+r is controllable if and only if the system 

Aoz'" + Doz" + KOZ = PoTB~*v, Ko = We + PJBo-lPo (2.2) 

of order 2v is controllable. An analogous theorem was stated in /8/. 

Theorem 8.2. If the rank of P0 is equal to the number of positional coordinates of the 
GUS (rank P0 = r), the system is always controllable. 

In this case it is obvious that the least number of controls is equal to the number of 
positional coordinats. 

CoPol~Gl"y 8.I. A system with only one positional coordinate (r = |) is controllable if 
and only if P0~0. 

There are various criteria that can be used to determine whether system (2.2) is con- 
trollable. Here we shall use a controllability criterion proposed in /I0/, that takes the 
specific structure of the forces into consideration. 

TheoPem 2.3. A GUS is controllable if and only if 

rank [[ ~,~A o + M) o + Ko; PorBo -x II = r, V ~  ~ A 

A = {Xl: de t  [£'Ao + ~Do + Ko] = 0} 

CoPolZu;Py 8.2. If K0~0, then the GUS is controllable if and only if rank P0=r. 

Ez.G2rp$e 8.1. Consider a physical pendulum of mass m, whose horizontal axis 00' may turn 
about a vertical axis NN' /3, ii/. The system has two degrees of freedom: rotation of the 
axis of oscillation through an angle $ (pseudocyclic coordinate) and rotation of the body 
about the axis of oscillation through an angle 0 (positional coordinate). The axes 00', NN' 
interest at 0; the axes 00', OG.(G. is the centre of gravity of the body) are the principal 
axes of the inertia ellipsoid for the point O. Under these assumptions 

2T = ~ 0 "  + (l, sm~  ~ - I ,  ~ s ~ ) ~  2 
U~ mgacosO, a =  10G,[ ,  ~ = ~" 

Here Ix, I~, [ 8 are the moments of inertia of the body. 
By Corollary 2.1, in the case of essential steady motions, this GUS is always controllable 

in ~he interval 0 <0 < ~. The sole exception is the degererate case 00 = ~/2, which is possible 
only when a= 0. 

EzampZe 8.2. Consider a heavy gyro in a perfect Cardan suspension, with the axis of 
rotation of the external gimbal vertical /3, 12/. The angle of nutation 0(0 ~0 ~ ~) is a 
positional coordinate, the angular velocities of spin Q and precession ~ are pseudocyclic. 
The controls affecting the cyclic coordinates are the moment FI produced by a motor rotating 
the external gimbal, and the moment F, of a motor installed on the internal gimbal and driving 
the gyro itself. The essential steady motions are determined by the equation 

(I, + J, -- Is -- Y3)Q0 ~ ~sO 0 -- 13~0Q 0 + mgz o = 0 

Here 11, 18 , J,, I s are the moments of inertia of the rotor and the internal gimbal, m is the 
mass of the gyro, and % (~ ~ 0) is the distance from the centre of gavity of the gyro to the 
centre of the suspension. 

In that case it can be shown, using Corollary 2.1, that this GUS is always controllable. 
We now consider a GCS (C0~0). The equations of the first approximation for the case 

of trivial steady motions of (1.1) (P0~0) are 

Ao.C" + (Do + Go) x" + WOZ + Co~" --0,  Bon" + CoTx "'= u (2.3) 

It is obvious that if C o C O  system (2.3) does not split into two independent sub- 
systems, as does (2.1) in the case of a GUS; instead, there is a cross connection through ~" 
and x", which presents some additional possibilities of stabilization. This is particularly 
important when the matrix W 0 is not positive definite. 

The following theorems can be proved. 

TheoPem 2.4. System (2.3) is controllable if and only if det V{0~0 and the system 

Sex'" + (Do + Go) x" + Wox = --CoBo-*V (2.4) 

is controllable. 
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Theorem 2.5. System (2.3) is controllable if and only if 

det Wo :P 0, rank II ~ S o  -5 2~ (D O ~- Go) -5 Wo, CoBo -111 : r, 

Vk ~ A~, A 1 {~ det [k~So -5 ~ (D O -5 Go) -5 Wo] = 0} 

Co~olZaPy 2.3. A system (2.3) with only one positional coordinate 

if and only if Co=/=0 s Wo=/=O. 
We now consider essential (P0~0) steady motions of the GCS (1.3). 

theorems can be proved. 

TheoPem 2.6. System (1.3) is controllable if and only if the system 

S o X " - 5  NoTx" -5 KoTx : 0 

(No = Do -5 Go - -  CoBo-~Po -5 PoTBo-*Co ~) 

r : I is controllable 

The following 

(2.5) 

is observable by the measurement 

o = C J B ~ x "  - -  PoBo-*X 

Theorem 2.7. System (1.3) is controllable if and only if 

kCo T - -  Po II 
rank  X~So -5 ~,No T -5 KoT I = r,  Vk ~ A~ 

A,  = {~ :  det  [t~So -5 ~,No T + Ko T] = 0} 

CoroZZctz'y 8.4. If Ko = Wo + PoTBo-*Po = 0, then system (1.3) is controllable if and only 
if rank P0 = r. 

CoPoZloa"y 2.5. If r = I, i.e., the system has only one positional coordinate, then 
system (1.3) is controllable if and only if 

~Co T : / : p o ,  V ~  A~ 

ExampZe 2.3. Consider a Cardan-suspended heavy gyro with directional asymmetry and 
vertical axis l, of rotation /4, 13/. The internal gimbal and rotor are linked by a cylindri- 
cal hinge 10 with axis /~ intersecting l I at a point 0. Assume that the rotor axis l~ is 
fixed in the body and the mass distribution of the rotor is symmetrical about this axis. 
Denote the centre of mass of the rotor, with coordinates x~, y~, z,, by Ol 

Choose moving coordinate frames 0~,~1~,, 0~2~,~, and 01~8~,~3. The axes 0~,, O~, O1~ , are 
respectively l~, ~, 13. The plane O~i~, contains the axis O~a. The angle between 0~1 and 0~, 
is denoted by e (0 < ~ < n); ~, ~, ~ are the direction cosines of the rotor in the system 0~, , 

I = -- G2 B2 -- Dz 
-- R~ -- D~ C~ 

is the inertia tensor of the internal gimbal in the frame O~2~,~z, J is the moment of inertia 
of the external gimbal relative to 11, A. is the axial and B. the equatorial moments of inertia 
of the rotor for the point O; ms, ma are the masses of the internal gimbal and the rotor; x,, 
y2, z~ are the coordinates of the common centre of mass of the internal gimbal and the rotor in 
the frame 0~ 2 For our gyro ~ = 0, z~ = 0 and 

D 2 -'~ maylz 1 0, R 2 -~ m3zlz I -- 0 

The angle of nutation @ is a positional coordinate. We shall assume that O = 0 when 13 
lies in a plane parallel to .l, and 12 (0 ~< ~ < ~). The angles of precession $ and spin ~ are 
cyclic coordinates. 

The generalized force corresponding to the positional coordinate 0 is the sum of moments 
of the gravitational and dissipative forces dff. The controls are the moment F, of the motor 
driving the external gimbal and the moment F= of the motor installed on the internal gimbal 
and driving the rotor. 

The regular precession # = 0, 0), = 4.= const, ~, = ~ = const is a trivial steady motion. Using 
Corollary 2.3, one can show that the GCS in question is controllable. 

3. We now consider the problem of observability for system (1.3) using measurements 

01 = H o x  + Lox" (3.i)  
o2 = Roll (3.2) 

where H0, L 0 are constant I X r matrices, and R 0 a constant I Xn--r matrix. The standard 



559 

observability criterion of Theorem I.I is extremely laborious to apply if n is large. Thanks 
to the specific structure of the system, one can devise more effective observability conditions. 
Using the observability criterion of /14/, one can prove the following theorems. 

T~eo~em 3.1. System (1.3), (3.1) is observable if and only if 

Ho 0 ! 
rank --Ko PoTBo 1U = n (3.3) 

,~ Ho + XLo 
ranKl~lS ° + ~N ° + Ko [ = r, V~EA3, )~=f=0 

As = {~,: d e t [ ~ S o + £ N o + K o l  = 0} 

CoPoZZo2"y 3.1. If Ho~0, system (1.3), (3.1) is not observable. 

CoPoZ~GFg 3.2. If L0-~-0 , H 0 = E,, then system (1.3), (3.1) is observable if and only if 
rank Po>n--r. In particular, this means that for the system to be observable the number of 
positional coordinates must not be less than the number of cyclic coordinates. 

CopoZZG2'y 3.3. In the case of trivial steady motions (P0-- 0), system (1.3), (3.1) is 
not observable. 

CoPol~Gl"y 3.4. In the case of a gyroscopically uncoupled system (C0~-0), system (2.1), 
(3.1) is observable if and only if condition (3.3) holds and 

• U Ho + ~Lo 
ranKllx,A .4_~Do+ KoI=r ,  V ~ A ,  ~=/=0 

Theorem 3.2.  System (1.3), (3.2) is observable if and only if 

Po -~ ~Co T 
detW o=/=0, rank k,So_l_KNo+Ko = r ,  V ~ A  3, ~,:¢= 0 

CoPoZZaz, y 3.S. In the case of trivial steady motions (P0 -- 0), system (1.3), (3.2) is 
observable if and only if 

~,Co T 
rank 

~2S o + ][ 
= r ,  V ; ~ A , ,  ;~=/=0 det W o :f= O, X (Do + Go) + Wo 

CorollGl, y 3.6. The GUS (C0--0) (1.3), (3.2) is observable if and only if 

detW o=~=0, rank k2Ao+~D o+Ko = r ,  V ~ _ A ,  ~:f=0 

CoPo~laPy 3.?. The GUS (C0-----0) (1.3), (3.2) for trivial steady motions (Po--0) is not 
observable. 

COPO~ZG2y 3.8. If the GUS (C0----0) (1.3), (3.2) has r = | (one positional coordinate), 
it is observable if and only if W0~=0 and P0~=0. 

COPOZIGI"y 3.9. In the case of trivial (P0--0) steady motions in system (1.3), (3.2) 
with r = I (one positional coordinate), the system is observable if and only if W0~0, 

Co=~O. 
These results can be illustrated with reference to the examples considered in Sect.2. 

EzG2rple 3.1. A physical pendulum is a GUS with one positional coordinate. Corollaries 
3.1, 3.2 and 3.8 imply: i) the system is not observable by the measurement % = z.2) the system 
is observable by the measurement ~5 = x and observable by the measurement % = ~. except for 
the degenerate case in which the centre of mass coincides with the point of suspension (a = 0). 

EzoIKple 3.2. For the Cardan-suspended gyro performing essential steady motions of the 
regular precession type, the system is not observable by the measurement ~ = z" but observable 
by the measurements o~ = x. o, = ~. as is shown similarly by application of Corollaries 3.1, 
3.2 and 3.8. 

EzGJfrple 3.3. Since regular precession of a Cardan-suspended heavy gyro with parallel 
asymmetry and vertical axis of rotation of the external gimbal corresponds to the case of 
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trivial steady motions of a GCS, it follows from Corollaries 3.4 and 3.9 that the system is 
observable by the measurement a2 = ~ but not observable by the measurements ~ ~ x. ~= x 

4. The third step in solving the stabilization problem is the construction of a stabiliz- 
ation algorithm. If the controllability conditions of Sect.2 are satisfied, this means that 
one can always select a control u in problem (1.3) by state feedback: 

u = - -K lX  --  K 2 x ' - - K 3 ~  (4.1) 

(here KI, K 2, K 3 are constant matrices of suitable dimensions) in such a way as to obtain 
any preassigned roots of the characteristic equation of the closed-loop system: 

A~'"  -5 (Do + Go) x" + Wox + Co~" - -  Po~ = 0 (4.2) 
B ~ ' - S C o T x  "" -5 Pox" = - - K l x - - K z x ' - - K 3 ~  

Under these conditions the trivial solution of the full non-linear closed-loopEq.(4.1) 
of system (1.2) will also be asymptotically stable. 

The elements of the matrices KI, K2, K 3 may be determined in various ways. In particular, 
one can reduce the system to what is known as canonical controllable form, i.e., the initial 
system is split into several subsystems with scalar conrols /15/. Selection of control coef- 
ficients for these subsystems corresponding to preassigned damping factors presents no essential 
difficulties; for example, one can use the convenient procedure of /16/. 

To produce a control (4.1) one needs all phase coordinates x, x', ~, which are usually 
measurable. However, as a study of the observability of the system described in Sect.3 will 
show, there is no need to measure all the phase coordinates. If the observability conditions 
stated in Sect.3 are satisfied, one can construct a stabilization algorithm for system (1.3) 
as 

u = --K12 -- K,~" -- K3~ ° (4.3) 

where x°,x ~, ~° are estimates for the vectors x,~, ~, obtained from an estimation algorithm 

~" = Ayy ° -5 L v (o -- C~) (4.4) 

where ~T = (~, ~', ~o), the matrices A~, C~ are determined by (1.5), (1.6), and s = Cuy is 
a measurement by which system (1.5) is observable; the amplification coefficient matrix Ly is 
determined on the basis of any criterion for the estimation errors Ay = y--y° to be small. 
The closed-loop control system obtained in this case is described by Eqs.(l.3), (4.3) and (4.4) 

The authors are indebted to V.A. Samsonov for useful comments. 
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A UNIVERSAL SEQUENCE OF PERIOD-DOUBLINfi BIFURCATIONS 
OF THE FORCED OSCILLATIONS OF A PENDULUM * 

V.I. GULYAYEV, A.L. ZUBRITSKAYA and V.L. KOSHKIN 

One of the most typical modes of chaotization in deterministic systems 
occurs when variation of the parameter characterizing the intensity of a 
disturbance takes a dynamical system through a sequence of 
period-doubling bifurcations from a regular to a stochastic mode of 
behaviour. The transition occurs in regions of phase space 
characterized by a strong local instability and obeys the law of 
universality recently discovered by Feigenbaum /i/. 

In this paper continuation with respect to a parameter and methods of branching theory 
/3/ are used in combination to construct a sequence of period-doubling bifurcations for the 
forced oscillations of a conservative pendulum. This sequence is shown to possess the 
universality property. 

I. We shall be concerned in this paper with the evolution and bifurcation of periodic 
solutions of the equation of forced oscillations of a pendulum 

x " + ~  s in  x = ~ sin ~ t  ( t . t )  

when the parameter k is varied and with analysis of the stability of these solutions. Suppose 
that at some parameter value ~ = ~(0) the pendulum oscillates with period T = 2~/~. The 
corresponding T-periodic solution ("T-solution") of Eq.(l.l) satisfies the conditions 

X(o) (0) = X<o) (T), ~o)" (0) = ~ "  (T) ( t .2)  

The  s o l u t i o n s  o f  E q . ( 1 . 1 )  a r e  c o n t i n u o u s  f u n c t i o n s  o f  t h e  i n i t i a l  c o n d i t i o n s  and  t h e  
parameter ~, so that the T-periodicity conditions can be written 

Xo = x (Xo, Xo', X, T) ( t .3)  

Zo" =£(Xo ,  Xo', ~, T) (Xo=Z (0)) 

X(o)o" 
We now vary both sides of (1.3) in the neighbourhood of the state 

8x(o~o = ~ 8X(o)o + ~ ~Xio)o _ az(r) _ --/f-- 8Xco) 

• • a z ' ( T )  o - , ' 

(Z~o)o = X(o) (0))  

2% =ffi ~(o), Xo ~ X(o)o, Xo" 

(1.4) 

I n t r o d u c i n g  t h e  n o t a t i o n  0x (t)/0x0 = Yx (t), Ox (t)lOx o" = y ,  (t), a x  (t)/O~, = y~ (t), 
Yx (T), y~ (T), y~ (T) f r o m  t h e  s o l u t i o n s  o f  t h e  a p p r o p r i a t e  v a r i a t i o n a l  e q u a t i o n s  

y , " + k ~ y ,  c o s x  = 0 ,  Ylo = t ,  Y,o" = 0 

Y 2 " ' + ~ Y 2 C ° S X  = 0 ,  Y , 0 = 0 ,  Y~o '=  t 

we determine 

(i 5) 
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